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Abstract. Urban landscapes play a critical role in shaping air and water quality, influencing the distribution of 
heavy metals and other pollutants. This study investigates the spatial and temporal variations of heavy metal 
concentrations in urban snow water within Jelgava City, Latvia, over three winter seasons (2017–2019). The study 
examines the relationships between heavy metal accumulation and urban land use categories, including residential, 
natural, transport, apartment, public, and industrial zones. Snow samples were analyzed for lead (Pb), nickel (Ni), 
chromium (Cr), and vanadium (V) using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), with 
statistical analyses performed to determine pollution trends and influencing factors. Results revealed significant 
spatial and temporal variations in heavy metal concentrations, with Pb exhibiting the highest mean concentration 
of 7.07 µg/L, followed by Ni (1.93 µg/L), Cr (2.77 µg/L), and V (2.08 µg/L). Maximum recorded values reached 
72.26 µg/L for Pb, 40.75 µg/L for Ni, 71.35 µg/L for Cr, and 64.16 µg/L for V, highlighting extreme pollution events. 
Statistical analysis confirmed significant year-to-year variations for Pb (p = 0.0047), Ni (p = 0.00028), and Cr (p 
= 0.00030), whereas V remained relatively stable (p = 0.0696), suggesting a continuous pollution source. The 
study also highlights the influence of urban density on heavy metal accumulation, emphasizing the impact of 
vehicular emissions, heating systems, and industrial activities. The findings underscore the need for integrated 
urban planning strategies to mitigate heavy metal pollution and improve environmental quality in urban settings. 
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Introduction
Urban landscapes are recognized as dynamic systems shaped 
by complex interactions among built, natural, and socio-
economic elements. In the context of growing urbanization, 
these systems significantly influence environmental quality, 
particularly air pollution [1–3]. Urban planning decisions, 
including the distribution of green areas, play a critical role 
in mitigating pollution. Green infrastructure—such as parks, 
forests, and water bodies—not only lowers particulate matter 
levels [4] but also enhances ecological functions such as 
microclimate regulation, pollutant filtration, and biodiversity 
support [5; 6]. Conversely, urban areas dominated by 
impervious surfaces and dense traffic can intensify pollution 
through increased emissions, resuspension of road dust, 
and limited dispersion of pollutants [7, 8]. Urban form—
particularly the layout of roads, residential density, and 
industrial zones—can directly affect the distribution and 
accumulation of airborne contaminants, including heavy 
metals. Heavy metals such as lead (Pb), nickel (Ni), chromium 
(Cr), and vanadium (V) are particularly concerning due to 
their persistence, toxicity, and bioaccumulation potential  
[9; 10]. These pollutants primarily originate from anthropogenic 
sources, including vehicle emissions, industrial activities, and 
fossil-fuel-based heating systems [11–14]. Once deposited 
on surfaces, heavy metals can be transported via runoff into 
soil and water systems, increasing ecological and human  
health risks [15].
Snow, especially in northern urban regions, offers a unique 
medium for assessing short-term air pollution levels. Acting 
as a passive sampler, snowflakes capture airborne particles 
and soluble pollutants during precipitation events and 
atmospheric deposition, effectively integrating pollution 
loads over time. This makes snow cover a valuable indicator 
of urban air quality and a suitable matrix for identifying 
spatial patterns of heavy metal accumulation [16–18]. Snow’s 
seasonal presence also allows for consistent sampling across 
urban gradients, particularly during periods of increased 
emissions from heating systems and reduced pollutant 
dispersion due to atmospheric stagnation [4–6]. 
The present study investigates the spatial and temporal 

distribution of heavy metal concentrations in snow within 
Jelgava City, Latvia, over three consecutive winter seasons 
(2017–2019). It aims to identify key pollution sources by 
analyzing the relationships between heavy metal levels and 
urban landscape structures, including green areas, transport 
infrastructure, and residential density. By integrating land use 
analysis with snow chemistry and statistical assessments, this 
research highlights how urban planning decisions influence 
pollution accumulation. Understanding these interactions 
is essential for designing targeted strategies that enhance 
urban resilience, reduce pollutant exposure, and support 
healthier urban ecosystems.
Materials and Methods
Study Area and Sampling Locations
The study was conducted in Jelgava City, Latvia [19],  
with a focus on assessing spatial variations in pollution 
accumulation across different urban environments. A total 
of 20 monitoring points were strategically selected to ensure 
comprehensive coverage of the city’s diverse land use 
patterns and pollution sources (see Figure 1). 
The monitoring points encompassed a wide range of land use 
categories, including residential areas, natural land, transport 
infrastructure, apartment building complexes, public spaces, 
and industrial zones. Each category was evaluated as  
a percentage of the total land cover within the respective 
monitoring point, enabling a comparative assessment of how 
different urban functions influence pollution accumulation.
Evaluation of urban structures
The first stage of the assessment involved analyzing Jelgava 
City’s official territorial plan to determine designated zones and 
their relative proportions. These zones included residential, 
natural, transport, apartment, public, and industrial areas. 
The territorial plan was imported into a Geographic 
Information System (GIS) platform, ensuring that all spatial 
data shared a common coordinate system. Within the GIS 
environment, a 150-meter-diameter buffer was delineated 
around each monitoring point, and the proportion of land-
use classes within each buffer was then calculated. This initial 
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step provided a foundational understanding of the planned 
urban landscape distribution.
In the second stage, high-resolution satellite imagery was 
collected and analyzed to cross-check and refine the zoning 
information derived from the territorial plan. By visually 
interpreting features such as buildings, roads, and green 
spaces—supplemented where possible by semi-automated 
classification techniques—researchers identified any 
disparities between official designations and observable land-
use patterns. For instance, recently developed residential 
buildings or newly reforested areas might not have been fully 
captured in the territorial plan. Updated or corrected land-
use proportions were then computed within each monitoring 
point’s buffer, enabling a more current and accurate overview 
of existing conditions.
The third stage consisted of on-site evaluations, aided by 
360° panoramic photographs taken at each monitoring 
point. By physically visiting these locations, the research 
team confirmed that categorized land uses (residential, 
natural, transport, apartment, public, and industrial) 
matched actual conditions. The panoramic images offered 
a comprehensive perspective, allowing quick detection of 
mixed-use spaces, transitional zones, or unclassified parcels.  

Where discrepancies surfaced between the territorial plan, 
satellite data, and on-site observations, adjustments were 
made in the GIS database. This final validation step ensured 
that the resulting dataset captured both the planned and 
de facto land-use structure, supporting a robust analysis of 
Jelgava City’s urban landscape.
Data Processing and Statistical Analysis
Summary statistics, including mean, median, standard 
deviation, quartiles, and range, were calculated for each 
heavy metal to evaluate concentration variability across years 
and monitoring points.
The temporal trends of metal concentrations were analyzed 
using four step approach. 1. Descriptive trend analysis, 
where mean concentrations were plotted across 2017–2019. 
2. Quartile-based trend analysis, identifying changes in 
the distribution of concentrations over time. 3. Statistical 
comparisons (ANOVA and Kruskal-Wallis tests) were 
conducted to determine whether significant differences 
existed between years. 4. Post-hoc pairwise comparisons 
(Mann-Whitney U test) were performed to identify specific 
year-to-year differences.
To assess spatial variation in metal concentrations across 
monitoring points were used extreme analysis approach. 

Fig. 1. The area of research and 
abbreviations of monitoring points
[created by authors]
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Fig. 2. The concentrations of 
heavy metals in snow water
[created by authors]

Fig. 3 the correlation between proportions of urban structures and heavy metal concentrations a) year 2017; b) year 2018 c) year 2019 
(red positiv correlation; green negativ correlation) [created by authors]

Monitoring points with the highest and lowest heavy metal 
accumulation were identified based on metal concentrations. 
Urban structure influence was analyzed by correlating heavy 
metal levels with land use percentages (residential, natural, 
transport, apartment, public, industrial). Correlation matrices 
(Pearson correlation and significance testing) were generated 
to explore relationships between metal concentrations and 
urban structures across all years and individually for 2017, 
2018, and 2019. Heatmaps with statistical significance were 
used to visualize correlations, with red indicating positive 
relationships and green indicating negative correlations, 
while significant values were marked with asterisks (p < 0.05).
Results 
Descriptive Statistics of Heavy Metals in Snow Water
The analysis of heavy metal concentrations in snow water 
samples from Jelgava City over the period of 2017–2019 
reveals significant variations in their distributions (See Figure 
2). Lead (Pb) exhibited the highest mean concentration of 
7.07 µg/L, with a median of 3.36 µg/L, indicating a right-
skewed distribution. The standard deviation of 11.33 µg/L 
and variance of 128.43 suggest substantial variability among 
sampling locations and years. The maximum recorded 
concentration of Pb reached 72.26 µg/L, while the minimum 
was 0.19 µg/L. The skewness value of 3.63 and kurtosis of 
15.98 further confirm that Pb concentrations are heavily 
skewed and exhibit a leptokurtic distribution, implying the 
presence of extreme values.
Nickel (Ni) concentrations displayed a lower mean of 1.93 
µg/L, with a median of 0.79 µg/L, suggesting a distribution 
influenced by a few high outliers. The standard deviation 
was 4.69 µg/L, and the variance reached 21.99, indicating 
substantial dispersion. The Ni concentration ranged between 
0.40 µg/L and 40.75 µg/L. The skewness (7.49) and kurtosis 
(61.27) highlight the extreme deviation from normality, with a 

strong right-skewed pattern.
Chromium (Cr) concentrations showed an overall mean of 
2.77 µg/L, with a median of 0.70 µg/L. The wide spread of 
data is reflected by a standard deviation of 8.72 µg/L and 
variance of 75.95. The minimum detected concentration 
was 0.25 µg/L, while the maximum reached 71.35 µg/L.  
The skewness (6.85) and high kurtosis (51.10) indicate  
a highly non-normal distribution, dominated by occasional  
extreme values.
Vanadium (V) concentrations followed a similar trend, 
with a mean of 2.08 µg/L and a median of 0.70 µg/L. The 
observed standard deviation was 7.26 µg/L, with a variance 
of 52.78. The lowest recorded concentration was 0.40 µg/L, 
while the highest measured value was 64.16 µg/L. Vanadium 
exhibited the strongest skewness (8.16) and kurtosis (69.83), 
indicating an extremely right-skewed distribution with 
highly concentrated extreme values. Overall, the statistical 
characteristics of all four heavy metals indicate strong right-
skewed distributions with high kurtosis, signifying occasional 
extreme pollution events at certain monitoring points. 
This suggests that localized pollution sources may have 
significantly influenced metal accumulation in urban snow 
during the study period.
The Correlation Between Concentrations 
and Urban Structures
The correlation analysis between heavy metal concentrations 
in snow water and urban structure types revealed varying 
relationships across different years and for total heavy metal 
loads (See Figure 3). In 2017, apartment area coverage showed 
the strongest positive correlation with Pb (r = 0.64, p < 0.05) 
and V (r = 0.52, p < 0.05), indicating that increased residential 
density may contribute to higher metal accumulation. No 
significant correlations were observed for other land use 
types. In 2018, no statistically significant relationships were 
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Fig. 5. The monitoring point ter_pav with urban 
structure sources and mitigation measures
[created by authors]

found, suggesting a more even distribution of heavy metal 
contamination without strong urban structure dependencies. 
In 2019, similar trends to 2017 were observed, with apartment 
area again demonstrating the most substantial correlations, 
particularly with Pb and Ni, possibly due to traffic emissions 
or heating system influences. The total correlation analysis 
across all years confirmed these findings, as apartment area 
coverage exhibited consistently positive relationships with  
Pb (r = 0.59, p < 0.05) and V (r = 0.25, p < 0.05), reinforcing the 
link between residential zones and heavy metal deposition. 
Other land use types, such as public, natural, and transport 
areas, generally showed weak or negative correlations, with 
no significant trends across multiple years. These results 
highlight the potential impact of urban density and land 
use patterns on localized heavy metal accumulation in  
urban snow.

The Trend Over Time
The analysis of heavy metal concentrations in snow water 
from 2017 to 2019 reveals distinct patterns and trends, 
supported by both descriptive and statistical approaches. 
Lead (Pb) exhibited the highest concentrations in 2018, 
followed by a notable decline in 2019. This trend, along with 
a decrease in median and upper quartile values, suggests a 
reduction in pollution from sources such as traffic emissions 
or industrial activity. Statistical testing confirmed significant 
temporal variation (p = 0.0047), especially between 2018 
and 2019. Nickel (Ni) remained relatively stable across 2017 
and 2018, with a slight decrease in 2019, and while quartile 
analysis showed minor fluctuations, statistical results (p = 
0.00028) indicate dynamic pollution patterns likely influenced 
by changing environmental factors or emission controls. 
Chromium (Cr) concentrations were mostly stable, with a 
moderate rise in the 75th percentile in 2018, followed by 

Fig. 4. The monitoring point do_sat with urban 
structure [created by authors]

Fig. 6. The monitoring point past_isl with urban 
structure [created by authors]
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stabilization. Statistically significant year-to-year differences 
(p = 0.00030) suggest episodic pollution events or varying 
deposition processes. In contrast, vanadium (V) displayed a 
gradual increase across all years, with a more pronounced rise 
in the upper quartile, indicating growing emissions potentially 
linked to industrial sources or heavy fuel oil combustion. 
However, statistical tests did not show significant differences 
across years (p = 0.0696), implying a steady emission source. 
Overall, these findings point to both declining and emerging 
pollution trends, highlighting the importance of targeted 
environmental monitoring, assessment of emission sources, 
and the development of effective mitigation policies.
The Urban Landscape Structures
Monitoring point 17 (DO_SAT) is characterized by a diverse 
urban structure, with 20% residential areas, 30% transport 
infrastructure, 25% apartment buildings, and 25% public 
spaces, while no industrial areas or natural land cover are 
present (see Figure 4). This location exhibits high heavy 
metal accumulation, with Pb (64.19 µg/L) as the dominant 
pollutant, followed by Cr (74.06 µg/L), V (67.26 µg/L), and 
Ni (43.22 µg/L). The elevated concentrations of Pb and Cr 
suggest significant pollution sources, likely linked to high-
density traffic, urban runoff, and residential heating emissions. 
The presence of extensive transport infrastructure and 
apartment areas may contribute to heavy metal deposition 
from vehicle exhaust, road dust, and construction activities, 
while the absence of natural land cover reduces the potential 
for pollutant retention or filtration. The high public space 
coverage also suggests possible human exposure risks, 
emphasizing the need for targeted pollution mitigation 
measures in this urban environment.
Monitoring point 14 (TER_PAV) is primarily composed of 
20% residential areas, 25% transport infrastructure, 45% 
apartment buildings, and 10% public spaces, with no 
industrial or natural land cover present (see Figure 5). This 
location exhibits an extremely high Pb concentration (117.26 
µg/L), significantly exceeding the levels of other heavy metals, 
while Ni (2.76 µg/L), Cr (3.57 µg/L), and V (2.62 µg/L) remain 
relatively low. The dominant presence of apartment buildings 
and transport infrastructure suggests that traffic emissions, 
road surface wear, and residential heating systems may be 
major contributors to Pb pollution. The lack of natural land 
cover may reduce pollutant retention capacity, leading to 
higher heavy metal accumulation in snow. The relatively low 
concentrations of Ni, Cr, and V indicate that specific Pb-related 
emission sources, such as historical leaded gasoline residues 
or localized construction activities, may be influencing this 
site. Given the high Pb concentration in an area with dense 
residential and public spaces, potential human exposure risks 
should be considered, necessitating further investigation  
into pollution. 
Monitoring point 7 (PAST_ISL) is predominantly covered by 
55% natural land, 20% transport infrastructure, and 25% 
public spaces, with no residential, apartment, or industrial 
areas (see Figure 6). This location exhibits moderate Pb 
accumulation (48.77 µg/L), while Cr (35.23 µg/L), V (11.75 
µg/L), and Ni (8.96 µg/L) show varying levels of concentration. 
The high percentage of natural land suggests that metal 
deposition here may result from atmospheric deposition or 
long-range transport rather than direct urban emissions. 
However, the presence of transport infrastructure and public 
areas indicates possible road dust resuspension and human 
activities contributing to pollution levels. The relatively high 
Cr concentration may be linked to natural soil composition 
or erosion processes, while Pb and Ni levels suggest 
some influence from vehicular emissions and historical 

contamination. Despite the high percentage of natural land 
cover, the observed metal concentrations indicate potential 
contamination sources, warranting further investigation into 
atmospheric deposition and transport-related emissions in 
the area. 
Monitoring point 1 (GAR_RUB) is characterized by 50% natural 
land, 30% transport infrastructure, and 20% residential areas, 
with no apartment buildings, public spaces, or industrial 
zones. The total heavy metal concentrations at this site are 
relatively low, with Pb (8.78 µg/L), Ni (2.75 µg/L), Cr (2.75 
µg/L), and V (2.3 µg/L). The dominance of natural land 
cover suggests that this area is less affected by direct urban 
pollution sources, likely benefiting from vegetative buffering 
and lower anthropogenic emissions. However, the presence 
of 30% transport infrastructure may contribute to the 
detected metal levels through road dust, vehicular emissions, 
and atmospheric deposition. The comparatively low heavy 
metal concentrations suggest that this site experiences less 
industrial or urban influence, with metal deposition likely 
driven by regional atmospheric transport and occasional 
runoff from transport surfaces. The findings indicate that 
GAR_RUB represents a lower pollution risk area, serving 
as a potential reference point for assessing background 
contamination levels in urban snow. 
Monitoring point 18 (SAT_GAN) is composed of 20% residential 
areas, 25% transport infrastructure, 15% apartment buildings, 
and 40% public spaces, with no natural land or industrial 
zones present. The total heavy metal concentrations at this 
site are relatively low, with Pb (11.15 µg/L), Ni (3.45 µg/L), Cr 
(3.50 µg/L), and V (2.51 µg/L). The relatively high proportion 
of public spaces and transport infrastructure suggests that 
metal deposition may be influenced by road dust, vehicular 
emissions, and human activities in public areas. The lack of 
natural land cover may reduce the site’s ability to naturally 
filter pollutants, allowing heavy metals to accumulate in snow. 
Overall, SAT_GAN exhibits moderate contamination levels, 
with transport and public space usage likely playing a role in 
metal distribution. 
Monitoring point 12 (TER_RAIL) is primarily dominated by 
90% transport infrastructure and 10% public spaces, with no 
residential, natural, apartment, or industrial areas present. The 
total heavy metal concentrations indicate moderate pollution 
levels, with Pb (10.00 µg/L), Ni (6.25 µg/L), Cr (5.61 µg/L), 
and V (3.88 µg/L). The overwhelmingly high proportion of 
transport infrastructure suggests that vehicle emissions, 
tire and brake wear, road dust resuspension, and railway-
related activities are likely the primary sources of heavy metal 
accumulation. The relatively high Ni and Cr concentrations 
could be linked to railway operations, metal corrosion, and 
fuel combustion residues, while Pb levels remain moderate, 
possibly due to historical pollution from leaded fuels or 
industrial transport emissions. The absence of natural land 
cover further reduces the ability of this area to retain and filter 
pollutants, leading to higher deposition rates in snow. Given 
its transport-oriented nature, TER_RAIL represents a high-
risk zone for metal contamination, particularly influenced by 
urban mobility and transport-related emissions.
Discussion
The findings highlight pronounced spatial and temporal 
variations in heavy metal concentrations, with lead (Pb) 
frequently presenting the highest mean values [20–22]. 
Urban snow cover, recognized as an indicator of atmospheric 
pollution [23, 24], often registered elevated Pb near high-
traffic roads and residential heating sources, particularly in 
winter [25–27]. Areas dominated by transport infrastructure 
(e.g., TER_RAIL) showed increased nickel (Ni) and chromium 
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(Cr), reflecting substantial vehicular and rail emissions [28, 
29]. Descriptive statistics confirmed that Pb and Cr surged 
after 2017 and stabilized in subsequent years, hinting at 
shifts in fuel use or regulatory measures [30–32]. By contrast, 
Ni exhibited year-to-year fluctuations, likely driven by 
meteorological variability or sporadic industrial activities [33, 
34]. Vanadium (V) remained stable, implicating continuous 
industrial or heavy fuel oil combustion as a persistent source 
[35–37]. Overall, ongoing monitoring and adaptive strategies 
are necessary to manage such diverse pollution dynamics 
[38–43, 31, 44].
Correlation analysis underscores that apartment areas 
strongly align with Pb and V, suggesting that dense residential 
zones heighten exposure from vehicular traffic and fossil-
fuel heating [31, 45–49]. In contrast, natural and transport 
zones displayed weaker or negative correlations, indicating 
potential buffering effects or lesser direct contamination [50–
54] Notably, sites with abundant vegetation, such as GAR_
RUB, exhibited lower heavy metal loads, echoing evidence 
that green infrastructure captures airborne pollutants and 
improves soil conditions [55–60]. As traffic, industrial, and 
residential sources intensify with urban growth, measures like 
emissions regulation, expanded green spaces, and improved 
zoning are essential [61–64]. Continuous, site-specific 
monitoring [44] can guide targeted interventions to mitigate 
heavy metal risks and foster healthier urban environments.
Conclusions
This study provides a comprehensive assessment of 
heavy metal contamination in urban snow water, offering 
insights into the influence of urban land use patterns 
on pollutant accumulation. The results indicate that Pb 
and Cr concentrations increased after 2017, stabilizing in 
subsequent years, while Ni exhibited significant year-to-year 
fluctuations, and V remained relatively stable. The highest 
Pb concentrations were recorded in apartment-dense areas, 
reaching 117.26 µg/L, while Ni and Cr were most prevalent in 
transport-heavy zones, with peaks of 43.22 µg/L and 74.06 
µg/L, respectively.
The strong positive correlation between apartment areas and 
Pb (r = 0.64, p < 0.05) and V (r = 0.52, p < 0.05) highlights 
the role of high-density residential zones in pollution 
accumulation. Transport infrastructure also exhibited a strong 
association with elevated Ni and Cr levels, emphasizing 
the impact of vehicular and railway emissions. Conversely, 
monitoring points with higher proportions of natural land 
cover demonstrated lower heavy metal concentrations, 
reinforcing the importance of urban green spaces in 
mitigating pollution.
The study’s findings emphasize the need for targeted pollution 
management strategies, including stricter traffic regulations, 
expansion of green infrastructure, and improved urban air 
quality policies. Future research should focus on long-term 
monitoring and expanding the dataset to include additional 
pollutants and meteorological influences. These efforts will 
support more effective urban sustainability strategies aimed 
at reducing heavy metal contamination and protecting public 
health in urban environments.
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Kopsavilkums
Pētījumā analizētas smago metālu (Pb, Ni, Cr, V) koncentrācijas 
sniega ūdenī Jelgavā trīs ziemas sezonās (2017–2019), sasaistot 
piesārņojumu ar pilsētvides zemes izmantojumu. Izvietojām 20 
monitoringa punktus dažādos apbūves tipos un katram 150 m 
rādiusā noteicām zemes izmantošanas proporcijas, bet metālus 
noteicām ar ICP-OES. Kopumā reģistrējām izteiktas telpiskās un 
laika svārstības: vidēji visaugstākais bija Pb (7,07 µg/L), kam sekoja 
Cr (2,77 µg/L), V (2,08 µg/L) un Ni (1,93 µg/L), ar atsevišķiem 
ekstrēmiem pīķiem (piem., Pb līdz ~72 µg/L). ANOVA/Kruskal–
Wallis testi apstiprināja nozīmīgas gada starpības Pb, Ni un Cr (p < 
0,01), kamēr V saglabājās statistiski stabils (p = 0,0696), norādot uz 
pastāvīgu emisiju avotu. Korelāciju matrica parādīja ciešākās pozitīvās 
saites starp daudzdzīvokļu apbūves īpatsvaru un Pb/V, savukārt 
transporta teritorijās biežāk pieauga Ni un Cr. Vietās ar lielāku 
dabas teritoriju īpatsvaru metālu līmeņi bija zemāki, apliecinot zaļās 
infrastruktūras buferfunkciju. Rezultāti izgaismo pilsētas struktūru, 
satiksmes un siltumapgādes sistēmu ietekmi uz metālu uzkrāšanos. 
Pētījums sniedz pierādījumus integrētas pilsētplānošanas un emisiju 
pārvaldības pasākumu nepieciešamībai (satiksmes regulējums, zaļo 
zonu paplašināšana, siltumapgādes modernizācija), lai mazinātu 
smago metālu slogu un uzlabotu pilsētvides kvalitāti.
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